Odpowiedzi

2009-11-23T20:12:56+01:00
Powstaly x∈(-∞,1>u(1,3>u(3,∞) kolejno je rozpatrze

|1-x|+|3-x|>4 ∧x∈(-∞,1>
1-x+3-x>4
-2x>0
x<0
x∈(-∞,1>∧x<0→x∈(-∞,0)



|1-x|+|3-x|>4 ∧ x∈(1,3>
-1+x+3-x>4
2>4
x∈pustego
x∈(1,3>∧x∈pustego →x∈zbior pusty



|1-x|+|3-x|>4 ∧ x∈(3,∞)
-1+x-3+x>4
2x>8
x>4
x∈(3,∞) ∧ x>4→(4,∞)

zatem rozw jest
x∈(-∞,0)u(4,∞)
1 4 1