Odpowiedzi

2009-05-27T19:57:14+02:00
5x=3y
x=3/5y

x=0,5d2
y=0,d1

z twierdzenia Pitagorasa:
17=√(y²+9/25y²)
17=√(34/25 y²)
17=5,83y/5
85=5,83y
y=14,58
x=8,75
d1=17,5
d2=29,16
P=0.5d1*d2=255 cm²
2009-05-27T19:58:37+02:00
A = 17cm
d1 = 5x
d2 = 3x
przekątne dzielą się na połowy, więc :
(2,5x)2 + (1,5x)2 = (17cm)2
6,25x2 + 2,25x2 = 289cm2
8,5x2 = 289cm2 : 8,5
x2 = 34cm
x = (pierwiastek z 34)cm
d1 = (5 pierwiastków z 34)cm
d2 = (3 pierwiastki z 34)cm
P = 1/2*d1*d2
P = 1/2*(5 pierwiastków z 34)cm*(3 pierwiastki z 34)cm
P = 1/2*510cm2
P = 255cm2 [wynik]
2009-05-27T19:59:10+02:00
A=17cm
5x-przekątna1
3x-przekątna 2

17²=(2,5x)²+(1,5x)²
289=6,25x²+2,25x²
289=8,5x²
34=x²
x=√34

P=5x*3x*1/2=7,5x²=7,5*34=255cm²
2009-05-27T20:05:55+02:00
Narysuj romb, zaznacz jeden trójkat prostokątny, bok rombu to przeciwprostokątna.
skoro stosunek przekątnych wynosi 5:3, to aby otrzymać boki trójkąta dzielisz to na pół, czyli 2,5 i 1,5. No i z pitagorasa.
(2,5x)²+(1,5x)²=17²
z tego wyliczasz x
6,25x²+2,25x²=289
8,5x²=289
x=√34
Potem liczysz długosći przekatnych
5x=5√34 i analogicznie 3x=3√34
Ze wzory na pole romu obliczasz
½*5√34*3√34
½ * 15 * 34 = 255 cm²