1.Ramię trujkąta równoramiennego ma gługość 29cm, a wysokośc poprowadzona do podsttwey ma długośc 21cm.Jaka jest długość promienie okręgu wpisanego w ten trójkąt?
2. W trójkąt prostokątny o przyprostokatnych 6 i 8 cm wpisano okrąg. jaka długość ma promień tego okręgu?
całe rozwiązania proszę

1

Odpowiedzi

Najlepsza Odpowiedź!
2009-12-03T14:32:03+01:00
1.Ramię trójkąta równoramiennego ma długość 29cm, a wysokość poprowadzona do podstawy ma długość 21cm.Jaka jest długość promienie okręgu wpisanego w ten trójkąt?
r - promień okręgu wpisanego
P - pole trójkąta
a, b, c - boki trójkąta
r = 2P/(a+b+c)
W tym zadaniu b = c = 29cm oraz h = 21 cm
Z twierdzenia Pitagorasa możemy wyliczyć ½a
b² = (½a)² + h²
(½a)² = b² - h²
(½a)² = 29² - 21²
(½a)² = 841 - 441
(½a)² = 400
½a = 20
a = 40
P = ½ah
P = 20*21
P = 420
r = (2*420)/(29+29+40)
r = 840/98 licznik i mianownik upraszczamy przez 14
r = 60/7
r = 8i4/7cm
Odp. Promień okręgu wpisanego w ten trójkąt ma długość 8i4/7 cm.
2. W trójkąt prostokątny o przyprostokątnych 6 i 8 cm wpisano okrąg. jaka długość ma promień tego okręgu?
r - promień okręgu wpisanego
P - pole trójkąta
a, b, c - boki trójkąta
r = 2P/(a+b+c)
P = ½*6*8
P = 24 cm²
brakuje nam przeciwprostokątnej czyli c
liczymy ją z twierdzenia Pitagorasa
c² = a² + b²
c² = 6² + 8²
c² = 36 + 64
c² = 100
c = 10
liczymy promień okręgu wpisanego:
r = (2*24):(6 + 8 + 10)
r = 48:24
r = 2 cm
Odp. Promień okręgu wpisanego w trójkąt prostokątny o przyprostokątnych długości 6cm i 8cm ma długość 2cm.
4 5 4