Odpowiedzi

2009-12-04T17:45:04+01:00
Pd=a² - pole dużego kwadratu
r- promień koła wpisanego w duży kwadrat
gdzie:
r=a/2
Jeśli w koło wpiszemy mały kwadrat to przekątna tego kwadratu będzie równa:
d=2*a/2=a
Pole małego kwadratu możemy policzyć wykorzystując wzór:
Pm=1/2d²
stąd:
Pm=1/2*a²
Pm=1/2a²

Różnica pól kwadratów wynosi:
Pd-Pm=8cm²
stąd:
a²-1/2a²=8
1/2a²=8
a²=16
a=4

Wzór na pole koła:
P=πr²
wiemy, że
r=a/2
r=4/2
r=2 cm
P=π*2²
P=4π cm²


voila!

1 5 1
2009-12-04T17:46:03+01:00
A-bok większego kwadratu
b- bok mniejszego kwadratu

a2-b2=8
a=2R
b=^2R

a2-b2=8
a=2R ->4R2-2R2=8 <->2R2=8 <->R=2
b=^2R

P=piR2=4pi
Najlepsza Odpowiedź!
2009-12-04T17:48:10+01:00
A - bok kwadratu
r - promień okręgu wpisanego w kwadrat
r = ½a
a₁ - bok kwadratu wpisanego w koło o promieniu r
2r = a₁√2
2*½a = a₁√2
a = a₁√2
P = a²
P₁ = a₁²
P - P₁ = 8cm²
a² - a₁² = 8cm²
(a₁√2)² - a₁² = 8cm²
2a₁² - a₁² = 8cm²
a₁² = 8cm²
a₁ = 2√2 cm
r = a₁√2/2
r = 2√2*√2/2
r = 2 cm
Pk = πr²
Pk = 4π cm²
Odp. Pole koła wynosi 4π cm².