Odpowiedzi

Najlepsza Odpowiedź!
2009-12-16T17:59:50+01:00
Z twierdzenia Bezout otrzymujemy:
W(5) = 1
W(-3) = -7

Wielomian W(x) możemy zapisać też jako:
W(x) = (x - 5) * (x + 3) * Q(x) + ax + b,
gdzie Q(x) to pewien wielomian.

W(5) = 1 => (5 - 5) * (5 + 3) * Q(5) + a * 5 + b = 1
=> 5a + b = 1

W(-3) = -7 => (-3 - 5) * (-3 + 3) * Q(-3) + a * (-3) + b = -7
=> -3 a + b = -7

Rozwiązujemy układ równań:
5a + b = 1
-3a + b = -7

5a + b = 1
b = 3a - 7

5a + 3a - 7 = 1
b = 3a - 7

a = 1
b = -4

Zatem
W(x) = (x - 5) * (x + 3) * Q(x) + (x - 4)
W(x) = (x² - 2x - 15) * Q(x) + (x - 4)

Reszta z dzielenia wielomianu W(x) przez wielomian P(x) wynosi x - 4.
12 4 12
2009-12-16T18:55:43+01:00
W(5) = 1
W(-3) = -7

albo tak:
W(x) = (x - 5) × (x + 3) × Q(x) + ax + b,


W(5) = 1 => (5 - 5) × (5 + 3) × Q(5) + a × 5 + b = 1
=> 5a + b = 1

W(-3) = -7 => (-3 - 5) × (-3 + 3) × Q(-3) + a × (-3) + b = -7
=> -3 a + b = -7
_____________________________
5a + b = 1
-3a + b = -7
___________________
5a + b = 1
b = 3a - 7
___________________
5a + 3a - 7 = 1
b = 3a - 7
___________________
a = 1
b = -4
____________________________
W(x) = (x - 5) × (x + 3) × Q(x) + (x - 4)
W(x) = (x² - 2x - 15) × Q(x) + (x - 4)

Reszta z dzielenia wielomianu wynosi x - 4.
5 4 5