Odpowiedzi

2009-12-15T21:34:53+01:00
Równanie musi mieć 2 pierwiastki (2 rozwiązania)
Δ>0
x²-(k+2)x+4=0
Δ= k² + 4k + 4 - 16 = k² + 4k - 12
k² + 4k - 12 = 0
Δ = 16 + 48 = 64 √Δ = 8
k₁ = (-4-8) /2 = -6
k₂ = (-4+8) /2 = 2
k∈ (-∞, -6)U(2, +∞)

1/x₁ + 1/x₂ > -1,5
(sprowadzamy do wspólnego mianownika)
1/x₁ + 1/x₂ = x₂ /x₁x₂ + x₁ /x₁x₂ = (x₁+x₂) /x₁x₂
teraz podstawiamy ze wzorów Viet'a
(-b/a) /(c/a) = (-b/a) * (a/c) = -b/c = (-k-2)/4
(-k-2) /4 > -1,5 /(obustronnie mnożymy przez 4)
-k-2 > -6
-k > -4
k < 4
k∈ (-∞,4)

łączymy oba warunki
k∈ (-∞, -6)U(2, +∞)
k∈ (-∞,4)

zatem k∈ (-∞, -6)U(2,4)
3 1 3