1. Wykonaj działania: A∪ B , A∩ B , A \ B , B \ A, Jeżeli A = (− ∞;2 >, B = (−1;4 >.2.Wskaż osie i środki symetrii następujących figur: prostokąt, równoległobok, prosta,
trójkąt równoramienny, trapez prostokątny.3.Wyznacz równanie prostej prostopadłej do prostej 2x − 3y − 4 = 0 i przechodzącej przez
punkt P = (− 3;1) . Pilnie proszę

1

Odpowiedzi

2009-12-18T16:47:11+01:00
1) rys
A∪ B = (− ∞;4>
A∩ B = (−1;2 >
A \ B = (− ∞;-1>
B \ A = (2;4>

2) rysunek

3)
2x − 3y − 4 = 0
-3y = -2x +4 |:(-3)
y = 2/3x + 4/3
Współczynnikkierunkowy prostej prostopadłej do danej musi spełniać warunek:
a1 = - 1/a2
a1 = -1/ 2/3
a1 = - 3/2
Więc prosta prostopadła do danej wyraża się wzorem:
y = -3/2x + b
Szukamy b. Podstawiamy współrzędne danego punktu przez który ma przechodzić szukana prosta:
1 = -3/2*(-3) + b
1 = 9/2 + b
-b = 4,5 - 1
-b = 3,5 |:(-1)
b = -3,5
Szukana prosta wyraża się wzorem:
y = -3/2x - 3,5