Basia i Ewelina mają razem 360 kart. Jeśli Ewelina odda Basi 10% swoich kart, to każda z nich bedzie miała tyle samo. Ile kart ma każda z dziewczynek?



Za 2 ołówki i 3 gumki Agnieszka zapłaciła 7,4 zł. Ołówki staniały 20%, a gumki zdrożału0 5%. Po zamianie cen Agnieszka za tę samą liczbę ołówków i gumek zapłaciłby o 76gr. mniej. Jakie były pierwotne ceny ołówka i gumki?

1

Odpowiedzi

2009-12-20T16:44:10+01:00

Więc :

Razem : 360
Teraz Basia :x+ 10% x = 180
Ewelina: x


x+10% x = 180
x + 1/10 x = 180
10/10 - 1/10x = 180
9/10x = 180
x= 180 * 10/9
x = 200

360 - 200 = 160

Odp: Ewelina na początku miała 200 kart a Basia 160. Gdy Ewelina dała jej swoje 10 % (czyli 20 kart ) miały tyle samo kart (czyli 180 )


Za 2 ołówki i 3 gumki Agnieszka zapłaciła 7,4 zł. Ołówki staniały 20%, a gumki zdrożału0 5%. Po zamianie cen Agnieszka za tę samą liczbę ołówków i gumek zapłaciłby o 76gr. mniej. Jakie były pierwotne ceny ołówka i gumki?



x-ołówki
y-gumki

2x+3y=7,40
2*0,8x+3*1,05y=6,64

2x+3y=7,40/:2
1,6x+3,15y=6,64

x=-3/2y+3,7
1,6(-3/2y+3,7)+3,15y=6,64


x=-3/2y+3,7
1,6(-3/2y+3,7)+3,15y=6,64


x=-3/2y+3,7
-2,4y+5,92+3,15y=6,64

x=-3/2y+3,7
0,75y=0,72

x=-1,44+3,7=2,26
y=0,96

rozumiesz . ?
pozdrawiam . ; **