Symetralne boków trójkąta prostokątnego przecinają się w punkcie odległym od wierzchołka kąta prostego o 5 cm. Wiedząc, że długości przyprostokątnych pozostają w stosunku 3:4, oblicz długości boków trójkąta.

i jeszcze jedno
W okrąg wpisano trójkąt ABC, A=50 stopni B=70 stopni. Przez wierzchołek C poprowadzono styczną do okręgu przecinającego przedłużenie boku AB w punkcie D. Oblicz miary kątów trójkąta BDC.

1

Odpowiedzi

2010-01-05T16:56:56+01:00
1 zadanie w załaczniku



2
1.Oznaczamy środek tego okręgu punktem O
2.Kąt CBA ma 70 stopni, więc kąt CBD ma 180-70=110 stopni (jedna prosta)
3.Kąt COB jako kąt środkowy oparty na kącie wpisanym wynosi 2*50=100 stopni.
4.Trójkąt COB jest równoramienny, więc kąt BCO = (180-100)/2=40 stopni.
5.CD jest styczną do okręgu w pkt. C, więc kąt OCD=90 stopni twierdzenia o stycznych
6.Kąt OCD-Kąt OCB=90-40=50=kąt BCD
7.Z sumy kątów w trójkącie wychodzi że kąt CDB=20 stopni. ;p
1 5 1