Zad1
oblicz miarę kąta ostrego α,wiedząc że:
a)sin2α=√2/2
b)cos3α=1/2
c)3+√3tg2α=4
d)tg2α=√3
e)4(1+sin3α)=6

zad2
oblicz miary kątów ostrych α i β gdy:
a)sin(α-β)=√2/2 i cos(α+β)=½
b)tg(α+β)=√3 i cos(α-β)=√3/2
c)sin(α+β)=√3/2 i tg(α-β)=√3/3

zad3
oblicz miarę kąta,jaki tworzy z osią x wykres funkcji liniowej określonej wzorem:
a)y=(2sin60°)x+tg45°
b)y=(2cos30°)x+tg30°
c)y=cos45°/sin45° x+2

1

Odpowiedzi

Najlepsza Odpowiedź!
2010-01-08T19:46:06+01:00
Z.1
a) sin 2α = √2 /2
2α = 45 ⁰
α = 22⁰ 30 minut
b) cos 3α = 1/2
3 α = 60⁰
α = 20⁰
c) 3 + √3 tg 2α = 4
√3 tg 2α = 1
tg 2α = 1/ √3
2α = 30⁰
α = 15⁰
d) tg 2α = √3
2 α = 60⁰
α = 30⁰
e) 4 ( 1 + sin 3α) = 6
1 + sin 3α = 6/4 = 3/2
sin 3α = 3/2 -1 = 1/2
3α = 30⁰
α = 10⁰
z.2
a) sin(α - β) = √2 /2 i cos (α + β) = 1/2
α - β = 45⁰ i α + β = 60⁰
2α = 105⁰
α = 52⁰ 30'
β = 60⁰ - 52⁰30' = 7⁰ 30'
b)
tg(α + β) = √3 i cos (α -β) = √3 /2
α + β = 60⁰ i α - β = = 30⁰
2 α = 90⁰
α = 45⁰
β = α - 30⁰ = 15⁰
c)
sin(α +β) = √3 /2 i tg (α - β) = √3 /3
α + β = 60⁰ i α - β = 30⁰
2 α = 90⁰
α = 45⁰
β = α - 30 ⁰ = 15⁰
z.3
a) y = (2sin 60⁰)X + tg 45⁰
a = tg α = 2*√3 /2 = √3 , zatem α = 60⁰
b)
y = (2cos 30⁰) x + tg 30⁰
a = tg α = 2*√3 /2 = √3, zatem α = 60⁰
c)
y =( cos 45⁰/ sin 45⁰) x + 2
a = tg α =[ (√2/2)/(√2/2)] = 1 , zatem α = 45⁰
a - współczynnik kierunkowy prostej równy tangensowi kąta
nachylenia tej prostej do osi OX.
29 2 29