Które z poniższych punktów leżą na okręgu o środku w początku układu współrzędnych i promieniu 10 . ?
A = (5,-7)
B = (pierwiastek z 19 , 9 )
C = (trzy pierwiastki z jedenastu , -1)
D = (-2,8)
Prosze o szybkie i szczegółowe rozwiązanie. Z góry wielkie dzięki . :**

1

Odpowiedzi

Najlepsza Odpowiedź!
2010-01-25T23:00:04+01:00
Równanie okręgu ma postać (x-a)²+(y-b)²=r² gdzie (a,b) to środek okręgu w tym przypadku są to współrzędne (0,0) czyli jest to początek układu współrzędnych a r jest to promień okręgu tutaj jest równy 10, skoro a=0 i b=0 czyli (x-0)²+(y-0)²=r²
z tego wynika x²+y²=r² r=10 a r²=100 więc x²+y²=100. Sprawdzamy punkt pierwszy A(5,-7) podstawiamy x=5 y=-7 x²=25 y²=49 25+49=74 74 nie jest równe 100 więc punkt a nie należy do okręgu następny punkt B=(√19,9) x=√19 y=9 x²=19 y²=81 19+81=100 czyli punkt B należy do okręgu. C=(3√11, -1) x=3√11 y=-1 x²=99 y²=1 99+1=100 punkt C należy do okręgu D=(-2,8) x=-2 y=8 x²=4 y²=64 4+64 nie jest równe 100 tylko 4+64=68 więc punkt D nie należy do okręgu. Mam nadzieje że to jest zrozumiałe i że nic nie pokręciłam :)
10 3 10