Zad 1.
Pan Choiński zakłada plantację choinek. Che zasadzić choinki tak, by liczna sadzonek w każdym rzędzie była równa liczbie rzędów. Obliczył, że jeżeli obsadzi tyle rzędów, ile zaplanował, to zostaną mu 4 sadzonki, jeśli zaś doda jeszcze jeden rząd i po 1 sadzonce w każdym rządzie, to zabraknie mu 25 drzewek. Oblicz, ile kupił sadzonek?
Zad 2.
Kwotę 3360przeznaczono na premię świąteczna dla pracowników. W ostatniej chwili zdecydowano, że premię otrzyma o dwóch pracowników mniej i wtedy okazało się, że pozostali otrzymają po 40 zł więcej. Wszystkie wypłacone premie były równe. Ilu pracowników je otrzyma ?
Zad 3.
W pewnym programie telewizyjnym wybierano Miss Publiczności. W konkursie wzięły udział Kasia, Marysia , Jasia, Sylwia i Weronika. Miss Publiczności została Jasia, uzyskując największy procent głosów. Jasia uzyskała o 118% głosów więcej niż jej przyjaciółka Sylwia. Różnica w procentach uzyskanych głosów między Jasią i Sylwią wynosiła 2 punktów. Oblicz, ile głosów uzyskała w tych wyborach każda z dziewcząt, jeżeli Weronika zdobyła okołu 10,45 % wszystkich głosów, a Kasia zdobyła o 8 punktów procentowych więcej niż Marysia. Wyniki podaj z przybliżeniu do 1 %.

Z góry dziękuje ;)

1

Odpowiedzi

Najlepsza Odpowiedź!
2010-01-28T14:18:36+01:00
Zad.1
I)
ilość rzędów x
ilość sadzonek w rzędzie x
ilość kupionych sadzonek x*x + 4 = x² + 4
II)
po dodaniu 1 rzędu i 1 sadzonki w każdym rzędzie
ilość rzędów x + 1
ilość sadzonek w rzędzie x + 1
ilość sadzonek (x + 1)² [i wtedy zabraknie 25 sadzonek, czyli
(x + 1)² - 25]
Układamy równanie:
(x + 1)² - 25 = x² + 4
x² + 2x + 1 = x² + 25 + 4
2x + 1 = 29
2x = 28
x = 14
Obliczamy ilość kupionych sadzonek
x² + 4 = 14² + 4 = 196 + 4 = 200
Odp. Pan Choiński kupił 200 sadzonek.

Zad.2
I)
Kwota zł na premię 3360
ilość pracowników mających otrzymać premię x
premia jednego pracownika ³³⁶⁰/x
II)
Kwota zł na premię 3360
ilość pracowników mających otrzymać premię x - 2
premia jednego pracownika ³³⁶⁰/(x -2)
premia jest większa o 40 zł
Układamy równanie:
³³⁶⁰/(x -2) = ³³⁶⁰/x + 40
³³⁶⁰/(x -2) = ³³⁶⁰/x + 40x/x
³³⁶⁰/(x -2) = (3360 + 40x)/x (korzystamy z proporcji)
3360x = (x-2)(3360 + 40x)
3360x = 3360x + 40x² - 6720 - 80x
40x² - 80x - 6720 = 0/:40
x² - 2x - 168 = 0
Δ = (-2)² - 4 *(-168)*1 = 4 + 672 = 676
√Δ = 26
x₁ = (2 - 26)/2 = -12 (odrzucamy, bo x liczba pracowników)
x₂ = (2 + 26)/2 = 14
14 - 2 = 12
Odp. Premię otrzymało 12. pracowników.







2 5 2