Odpowiedzi

Najlepsza Odpowiedź!
2010-02-11T10:28:02+01:00
Witam!
Najpierw robię rysunek:
http://img1.vpx.pl/up/20100211/beztytulu40.png

Skoro ostrosłup jest prawidłowy czworokątny, więc w podstawie mamy kwadrat. Jak wiadomo przekątna w kwadracie jest √2 raza dłuższa od jego boku, więc bok tego kwadratu równa się a=8 cm. Wiadomo również, że w kwadracie obie przekątne są takie same i przecinają się pod kątem prostym. Poza tym po "przecięciu" zostają podzielone na pół. Teraz wystarczy tylko obliczyć wysokość h. Zapisujemy tw. Pitagorasa dla trójkąta ABC:

(4√2)^2+h^2=12^2
h=√(12^2-(4√2)^2)
h=4√7 cm

Objętość ostrosłupa obliczymy za pomocą wzoru:

V=1/3 * Pp * h, gdzie Pp to pole podstawy równe a^2, więc:
V=1/3 * 8^2 * 4√7=225,77 cm^3 (w zaokrągleniu)

Pozdrawiam!:)
17 2 17
2010-02-11T10:44:02+01:00
W ostrosłupie prawidłowym czworokątnym przekątna podstawy jest równa 8 pierwiastków z 2, a krawędź boczna ma 12 cm długości. Oblicz objętość tego ostrosłupa

DANE:
d = 8√2cm
b = 12cm

SZUKANE:
V = ?
V = ¹/₃ Pp*H

TERAZ PRZEJDŹ DO ZAŁĄCZNIKA :)

OBLICZAM WYSKOKOŚĆ H:

H² = b² - (½d)²
H² = 12² - (½ * 8√2)²
H² = 144 - (4√2)²
H² = 144 - 32
H² = 112
H = √112
H = √16*7 - to całe wyrażenie, czyli 16*7 jest pod pierwiastkiem
H = 4√7 cm

OBLICZAM BOK a:
d = a√2
8√2 = a√2 /:√2
a = 8cm

OBLICZAM POLE PODSTAWY:
Pp = a²
Pp = 8²
Pp= 64cm²

OBLICZAM OBJĘTOŚĆ OSTROSŁUPA:
V = ¹/₃ Pp * H
V = ¹/₃ * 64 * 4√7
V = 256√7 /3 cm³ - tylko zamiast / wstaw kreskę ułamkową :)

POZDRAWIAM :)
36 4 36