Dany jest trójkąt równoramienny ABC, [AB]=[BC] o obwodzie 50 cm. W trójkącie tym przeprowadzono wysokość BD. Obwód trójkąta ABD wynosi 35cm. Oblicz długość wysokości BD. Proszę o rysunek może być w peint. Na adres [email protected]

2

Odpowiedzi

Najlepsza Odpowiedź!
2010-02-09T23:10:49+01:00
Rysunek sam narysuj, to nic trudnego

narysuj trójkąt równoramienny o podsatawie AC, wzierzchołek oznacz B, z B poprowadź na AC wtsokość i punkt , w którym ta wysokosć przecina AC oznacz D

AB=a
BC=a
BD=b
AD=DC=½c

a+½c=35-b/×2
2a+c=50
2a+c=70-2b
50=70-2b
-2b=-20
b=-20:-2
b=10cm

ODP. WYSOKOŚĆ bd MA 10 CM
19 4 19
  • Roma
  • Community Manager
2010-02-09T23:24:56+01:00
O - obwód
BD - wysokość ΔABC
|AB| = |BC|
OΔABC = 50 cm
OΔABD = 35 cm
|AD| = ½*|AC|

OΔABC = |AC| + |AB| + |BC| = |AC| + |AB| + |AB| = |AC| + 2*|AB|
|AC| + 2*|AB| = 50

OΔABD = |AD| + |AB| + |BD| = ½*|AC| + |AB| + |BD|
½*|AC| + |AB| + |BD| = 35 /*2
|AC| + 2*|AB| + 2*|BD| = 70
50 + 2*|BD| = 70
2*|BD| = 70 - 50
2*|BD| = 20 /:2
|BD| = 10 cm

Odp. Długość wysokości wynosi 10 cm.
11 5 11