Dwa różne automaty wykonują razem zadaną pracę w ciągu 3 godzin. Gdyby pierwszy automat pracował sam przez 1 godzinę, a następnie drugi sam pracował przez 6 godzin, to wykonałyby one 75% całej pracy. W ciągu ilu godzin każdy automat może wykonać pracę samodzielnie? Podpowiedź: powinno wyjść, że pierwszy automat w ciągu 4 godzin, a drugi w 12 godzin ;))

1

Odpowiedzi

2009-10-12T10:35:10+02:00
OPIS NIEWIADOMYCH
x-ilosc godzin pracy 1-szego automatu potrzebna do wykonania calej pracy
y-ilosc godzin pracy 2-ego automatu potrzebna do wykonania calej pracy

To zadnie nalezy rozwiazac korzytajac z wydajnosci.
1/x - czesc pracy 1-szego automatu wykonana w ciagu 1 godziny
1/y - czesc pracy 2-ego automatu wykonana w ciagu 1 godziny

Jezeli pracuja razem to wykonaja 1/3 pracy w ciagu 1 godziny tzn
1/x+1/y=1/3

Informacja z drugiej cz. zadania

1*1/x+6*1/y=3/4 /1-szy godzine drugi 6 godzin/


Dwa rownania i dwie niewiadome
1/x+1/y=1/3
1/x+6*1/y=3/4 odewjmuje stronami
5*1/y=3/4-1/3
5/y=9/12-4/12=5/12
y=12
1/x=1/3-1/12=4/12-1/12=3/12
x=12/3=4

ODP
pierwszy automat wykona cala prace wciągu 4 godzi a drugi w ciagu 12 godzin

Pozdrawiam

Hans


6 4 6