Odpowiedzi

Najlepsza Odpowiedź!
2010-03-27T20:38:21+01:00
Przekształcimy dany wzór korzystając ze wzoru skróconego mnożenia na różnicę kwadratów
an = [1² - (1/4)²][1² - (1/3)²][1² - (1/4)²]..... [1² - (1/n)²][1 - (1/(n + 1))²] = [(1 - 1/2)(1 + 1/2)][(1 - 1/3)(1 + 1/3)][(1 - 1/4)(1 + 1/4)]²..... [(1 - 1/n)(1 + 1/n)][(1 - 1/(n + 1))(1 + 1/(n + 1))] = [1/2 * 3/2][2/3 * 4/3][3/4 * 5/4]..... [(n - 1)/n * (n + 1)/n][n/(n + 1) * (n + 2)/(n + 1)] = 1/2 * (n + 2)/(n + 1) = (n + 2)/2(n + 1)

czyli ostatecznie:
an = (n + 2)/2(n + 1)

teraz możemy prosto policzyć granicę:
lim an = lim (n + 2)/2(n + 1) = lim (1 + 2/n)/2(1 + 1/n) = 1/2

jak masz pytania to pisz na pw