1. Przekrój osiowy kuli ma pole powierzchni równe 9π. Oblicz pole powierzchni i objętość tej kuli.

2. Objętość kuli jest równa (ułamek) π/6 dm³. Oblicz pole powierzchni tej kuli.

3. Pole powierzchni całkowitej półkuli wynosi 30π. Oblicz objętość i pole powierzchni całej kuli.

Będę wdzięczna za chociaż 2 zadania.

1

Odpowiedzi

2010-03-28T16:09:58+02:00
Z.1
P1 - pole przekroju kuli czyli koła
P1 = 9 π = π r² --> r² = 9 ---> r = √9 = r
r - promień kuli
P - pole powierzchni kuli ( sfery)
P = 4 π r² = 4 π *3² =9*4*π = 36 π j²
V = (4/3) π r³ = (4/3) π *3³ = (4/3)*27 π = 36 π j³

z.2
V - objętość kuli
V = (4/3) π r³
V = (π/6) dm³ = (π/6) * 1000 cm³
(4/3) π r³ = (π/6) *1000 cm³
r³ = [(1/6)*1000 cm³] : [4/3] = [1000/6 ]*[3/4] cm³ = 125 cm³
r = ∛125 cm = 5 cm
P = 4 π r² = 4 π (5cm)² = 4*25 π cm² = 100 π cm²
czyli P = π dm²
z.3
P1 - pole powierzchni półkuli
P1 = 30 π ( j²)
P - pole powierzchni kuli
P = 2*P1 = 2*30 π = 60 π ( jednostek kwadratowych )
ale P = 4 π r² więc
4 π r² = 60 π --> r² = 60 : 4 = 15
r = √15
V = (4/3) π r³ = (4/3) π (√15)³ = (4/3)*15*√15 π =
= 20√15 π ( jednostek sześciennych)