Dwa prostokątne ogródki mają równe pola. Szerokość pierwszego ogródka jest równa 12m, a drugiego 15m Ile trzeba kupić metrów bieżących siatki na ogrodzenia każdego ogródka, jeżeli długość pierwszego ogródka jest o 5 m większa od długości drugiego ?

3

Odpowiedzi

  • Użytkownik Zadane
2010-04-14T20:00:27+02:00
Wymiary pierwszego ogródka:
a=12m
b=x+5m

pole=ab=12(x+5)=12x+60

wymiary drugiego:
a=15m
b=x m
pole=15x

12x+60=15x

12x-15x=-60
-3x=-60
x=60:3
x=20

1 ogródek:
a=12m
b=x+5=20+5=25m
obwód=2a+2b=2×12+2×25=24+50=74m siatki trzeba kupić

2 ogródek:
a=15m
b=x=20m
obwód=2×15+2×20=30+40=70m siatki trzeba kupić


dasz najj?
4 3 4
2010-04-14T20:01:08+02:00

x-długość drugiego ogródka

(x+5)*12=15x
12x+60=15x
60=15x-12x
60=3x
x=20 (m)

nasze x, czyli długość jest równe 20 m, czyli długość drugiego ogródka jest równa 20 m.

Długość pierwszego ogródka oznaczyliśmy wzorem x+5, czyli jego długość wynosi 20+5, czyli 25 (m).

Wymiary pierwszego ogródka w kształcie prostokąta to: 12x25
Obw=(12*2)+(25*2)=74 (m)

Wymiary drugiego ogródka w kształcie prostokąta to: 15x20
Obw=(15*2)+(20*2)=70 (m)
2 4 2
Najlepsza Odpowiedź!
2010-04-14T20:07:03+02:00
Wymiary 1 ogródka:
a=12m
b=x+5m

p=a*b
p=12(x+5)
p=12x+60

wymiary drugiego ogródka :
a=15m
b=x m
pole=15x

12x+60=15x
12x-15x=-60
-3x=-60/:(-3)
x=60
x=20

1 ogródek:
a=12m
b=x+5=20+5=25m

obw=2a+2b
obw=2×12+2×25
obw=24+50=74(m) -tyle siatki należy kupić aby ogrodzić pierwszego ogódek

2 ogródek:
a=15m
b=x=20m
obw=2a+2b
obw=2×15+2×20
obw=30+40=70m - tyle siatki nalezy kupić kupić aby ogrodzic drugi ogródek


1 5 1