Odpowiedzi

Najlepsza Odpowiedź!
2010-04-15T18:25:56+02:00
Założenie o ciągu arytmetycznym jest niepotrzebne.

Skoro:
S1 = a1
S2 = a1 + a2
...
S(n-1) = a1 + a2 + ... + a(n-1)
Sn = a1 + a2 + ... + a(n-1) + an

to widać , że odejmując dwa powyższe równania mamy:

Sn - S(n-1) = a1 + a2 + ... + a(n-1) + an - (a1 + a2 + ... + a(n-1))
czyli:
Sn - S(n-1) = an

Skoro Sn = 2n^2 + 3n
S(n-1) = 2(n-1)^2 + 3(n-1)

an = Sn - S(n-1)
an = [2n^2 + 3n] - [2(n-1)^2 + 3(n-1)]
an = 2n^2 + 3n - 2n^2 + 4n - 2 - 3n + 3
an = 4n + 1

zatem piąty wyraz to:

a5 = 4 * 5 + 1 = 21